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Abstract
Deep autoencoder is widely used in dimensional-
ity reduction because of the expressive power of
the neural network. Therefore, it is naturally suit-
able for embedding tasks, which essentially com-
presses high-dimensional information into a low-
dimensional latent space. In terms of network rep-
resentation, methods based on autoencoder such as
SDNE and DNGR have achieved comparable re-
sults with the state-of-arts. However, all of them
do not leverage label information, which leads to
the embeddings lack the characteristic of discrim-
ination. In this paper, we present Triplet En-
hanced AutoEncoder (TEA), a new deep network
embedding approach from the perspective of met-
ric learning. Equipped with the triplet-loss con-
straint, the proposed approach not only allows cap-
turing the topological structure but also preserv-
ing the discriminative information. Moreover, un-
like existing discriminative embedding techniques,
TEA is independent of any specific classifier, we
call it the model-free property. Extensive em-
pirical results on three public datasets (i.e, Cora,
Citeseer and BlogCatalog) show that TEA is sta-
ble and achieves state-of-the-art performance com-
pared with both supervised and unsupervised net-
work embedding approaches on various percent-
ages of labeled data. The source code can be ob-
tained from https://github.com/yybeta/TEA.

1 Introduction
Real-world networks often contain billions of nodes. It is in-
tractable to perform complex mining tasks on these original
networks such as node classification, link prediction, commu-
nity detection [Shao et al., 2015] and recommendation. Cur-
rently, one promising solution is network representation, tar-
geting to embed networks into a low-dimensional space (i.e.,
learn a vector representation for each vertex, with the goal of
reconstructing the network in the learned embedding space,
while the information of the original network is retained to
the maximum).

∗Corresponding Author

During the past decade, many network embedding methods
have been proposed (e.g., [Tang et al., 2015; Perozzi et al.,
2014; Grover and Leskovec, 2016; Wang et al., 2016; Cao et
al., 2016; Zhou et al., 2017; Velickovic et al., 2018]), which
can be broadly categorized as shallow model or deep model.
The commonly used techniques in the shallow model include
matrix factorization and random walk. Factorization-based
methods such as LINE [Tang et al., 2015] and GraRep [Cao
et al., 2015] represent the target network as a data matrix and
factorize this matrix to yield low-rank embeddings. Random
walk based methods like node2vec [Grover and Leskovec,
2016], learn a vector embedding by exploiting random paths
to preserve the local or global network structure. For all shal-
low models, the major limitation is that they fail to capture
the complex nonlinear network structure.

As a result, many deep models have been proposed in re-
cent years [Perozzi et al., 2014; Wang et al., 2016; Cao et
al., 2016; Velickovic et al., 2018]. For example, thanks to
the powerful ability to model non-linear complex relation-
ship, deep autoencoders are popularized in network embed-
ding such as SDNE [Wang et al., 2016] and DNGR [Cao et
al., 2016], which have achieved state-of-the-art performance.

Recent studies on semi-supervised learning have demon-
strated that leveraging labeling information does help net-
work representation, especially for prediction-related tasks
[Tu et al., 2016; Li et al., 2016]. However, current works
mainly focus on training a specific classifier (e.g., SVM)
with labeled information, such as MMDW [Tu et al., 2016].
The classifier-dependent learning framework is not stable and
only performs well in node classification task with SVM.
If we use the resulting embedding for node classification or
clustering with other learning models, its performance is usu-
ally not satisfactory (see Tables 5 and 6 for example).

Motivated by previous works, in this paper we introduce a
new deep network embedding approach, called Triplet En-
hanced AutoEncoder (TEA), aiming to preserve both non-
linear network structure and node discriminative information.
To this end, the label information is reformatted as a set of
triplet constraints from the perspective of metric learning, and
then plugged into an autoencoder architecture to learn a deep
network embedding. We evaluated the performance of TEA
on both node classification and clustering tasks, and the re-
sults show that our proposed model outperforms other com-
petitive baselines, which suggest it is beneficial to both super-
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vised and unsupervised tasks.
To summarize, we make the following contributions.

• We employ a metric learning strategy to utilize label in-
formation for network embedding. As a semi-supervised
model, TEA not only allows capturing non-linear net-
work structure with deep autoencoder, but also preserv-
ing the node discriminative information by imposing the
triplet constraints.

• The proposed model TEA is model-free, which indicates
that it is independent of any specific classifier. We are
also the first who “supervise” the unsupervised autoen-
coder by metric learning.

• We conduct extensive experiments on real-world net-
works, and results show the effectiveness of the pro-
posed TEA model.

2 Related Work
2.1 Network Embedding
In recent years, a growing number of works are proposed
to find a good network representation in a low-dimensional
space. As aforementioned, one strategy is to extract latent
embeddings by singular value decomposition or matrix fac-
torization [Cao et al., 2015; Ou et al., 2016; Tu et al., 2016;
Wang et al., 2017; Yang et al., 2015; Zhang et al., 2016]. This
type of methods typically work on a data matrix AAA (e.g., ad-
jacent matrix) that characterizes the topological properties of
a given network, and then factorizesAAA ≈ UTVUTVUTV orAAA ≈ UTUUTUUTU
into two low-dimensional embedding matricesUUU and VVV (i.e.,
the new network embedding). Since the formation process of
a network is complicated and highly nonlinear, thus a linear
function like matrix factorization may not be adequate to map
the original network to an embedding space [Cai et al., 2018].

Inspired by the word2vec [Mikolov et al., 2013], there
are also many random-walk-based methods emerged [Perozzi
et al., 2014; Grover and Leskovec, 2016; Pan et al., 2016;
Zhou et al., 2017], which propose some implicit reduc-
tion models by gathering random walk sequences of sam-
pled nodes throughout a network. These methods work well
in practice but struggle to explain what network properties
should be kept in their objective functions. Deep autoen-
coders are also used to learn latent embedding of AAA [Cao
et al., 2016; Wang et al., 2016] in an unsupervised way,
where achieve non-linear mapping with various activation
functions. For these works, different objective functions like
Kullback–Leibler divergence [Tang et al., 2015] or Huber
loss [Wei et al., 2017], are applied for network embedding.
In addition, some methods are proposed to apply convo-
lutional neural networks to make use of node attributes of
networks [Kipf and Welling, 2017; Hamilton et al., 2017;
Velickovic et al., 2018].

2.2 Metric Learning
Learning a good distance metric in feature space is crucial
in real-world applications. Good distance metrics are im-
portant to many computer vision tasks, such as image clas-
sification and content-based image retrieval. Distance met-
ric learning attempt to learn metrics that keep all the data

points within the same classes close, while separating all
the data points from different classes far apart. Prior works
explored finding a mapping function ranging from a linear
transform [Weinberger and Saul, 2009; Liao et al., 2015;
Liu et al., 2017] to complex non-linear mappings usually
represented by deep neural networks [Ding et al., 2015;
Cheng et al., 2016].

3 Method
3.1 Problem Definition
Let us begin with formally defining the problem of network
representation learning. Suppose we are given a networkG =
(V,E), where V = {v1, v2, ..., vn} is the set of all vertices
and E = {ei,j}ni,j=1 represents the set of edges. Each edge
is associated with a weight wi,j ≥ 0, wi,j = 0 if vi and vj
is not linked. Otherwise, for unweighted graph wi,j = 1 and
for weighted graph wi,j > 0. We let xxxi = [wi,0, ..., wi,n]T

as the original representation of node i, let Y ∈ Rn×k be a
binary matrix that collects the label of all n nodes, where k is
the number of label categories.

Network embedding aims to map the graph data into a
low-dimensional latent space and information of the original
topology should be preserved to the maximum, where each
vertex is represented as a low-dimensional vector. Namely,
we aim to find a map function f : R|V |×1 → Rd×1, d� |V |.
Then for each node i, the original representation vector xxxi
becomes ΦΦΦi.

3.2 DNGR Revisited
To motivate our method, we first discuss the closest re-
lated work, which is a prior deep autoencoder-based model:
DNGR.

DNGR consists of three components: random surfing, pos-
itive point-wise mutual information (PPMI) calculation and
stacked denoising autoencoder. Random surfing is used on
the input graph to generate a probabilistic co-occurrence ma-
trix, analogous to using the original adjacency matrix as a
similarity matrix to express topological information.

PPMI matrix is transformed from the probabilistic co-
occurrence matrix and used to solve the problem in word
embedding that frequent words with relatively little seman-
tic value such as meaningless stop words, these words often
have a disproportionate effect on the word representations. It
was proved [Cao et al., 2016] to have a better-tuned context
weighting strategy compared to word2vec and Glove[Pen-
nington et al., 2014]. It ensures that the following autoen-
coder model can capture high-order proximity more properly.

The point-wise mutual information (PMI) is calculated as
follow:

PMIw,c = log(
#(w, c) · |D|
#(w) ·#(c)

) (1)

Where |D| =
∑

w

∑
c #(w, c). A common approach to

improving performance is to assign each negative value to
0, detailed in [Levy and Goldberg, 2014], to form the PPMI
matrix

PPMIw,c = max(PMIw,c, 0) (2)
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With random surfing and PPMI, the adjacency matrix is
transformed into a PPMI matrix, and is finally fed into an au-
toencoder to obtain the network embedding. For the encoder,
it consists of multiple non-linear functions that map the input
data to the representation space. Similarly, the decoder con-
sists of multiple non-linear functions mapping the embedding
in the representation space to the reconstruction space. For-
mally, given an input xxxi, the hidden representations for each
layer are shown as follows.

yyy
(1)
i = σ(WWW (1)xxxi + bbb(1)) (3)

yyy
(k)
i = σ(WWW (k)yyy

(k−1)
i + bbb(k)), k = 2, ...,K (4)

Here we use the LeakyRelu activation function as σ in our
experiments. After obtaining ΦΦΦi = yyy

(K)
i , we can get the out-

put x̂xxi by decoding ΦΦΦi, i.e., reverse the calculation process of
the encoder. The goal of the autoencoder is to minimize the
reconstruction error between the output and the input. The
loss function is given as follow.

Lr =
n∑

i=1

||x̂xxi − xxxi||22 (5)

In order to enhance the robustness of DNN, each input sample
xxx in Eq. (3) is corrupted randomly by assigning some entries
in the vector to 0 with a certain probability.

The stacked denoising autoencoders aids robustness of the
model in the presence of noise. It also allows capturing un-
derlying structure, which is essential to many mining tasks
such as link prediction and node classification. However, as
aforementioned, existing autoencoder-based network embed-
ding fails to preserve the node discriminative information. In
the following, we will introduce triplet-loss, a metric learn-
ing perspective to integrate label information in our proposed
model.

3.3 Metric Learning with Triplet-loss
Metric learning aims to find a mapping function (called met-
ric) D : X × X → R≥0 over a vector space which used to
metric the distance of two vectors xxxi,xxxj ∈ X. A popular
metric is Mahalanobis distance that defined as follow.

DM (xxxi,xxxj) =
√

(xxxi − xxxj)TMMM(xxxi − xxxj) (6)

WhereMMM is a positive semidefinite matrix. Originally, this
term was used to describe the quadratic forms in Gaussian
distributions, the matrix MMM plays the role of the inverse co-
variance matrix. For clarity we next use the shortcut notation
Di,j = DM (xxxi,xxxj).

Our idea is to keep nodes with the same class to be close
to each other in certain relation space, and keep vertices with
different classes far apart. We define the following margin-
based loss function as the objective function.

Ltri(θ) =
∑
a,p,n

ya=yp 6=yn

[m+Da,p −Da,n]+ (7)

Given an anchor point xxxa, the projection of a positive point
xxxp belonging to the same class ya is closer to the anchor’s
projection than that of a negative point belonging to another
class yn, by at least a margin m.

Training Triplet ( , , )

Compute vectors by random surfing

Encoder Encoder Encoder

Embedding

Decoder Decoder Decoder

Objective Function:

min
, ,

+

, ,

+

1 +

Compute Triplet-loss by 

Shared

weights

Shared

weights

Shared
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Figure 1: The framework of the Triplet Enhanced Autoencoder
(TEA).

3.4 TEA: Triplet Enhanced Autoencoder
Building upon the deep autoencoder and triplet-loss [Schroff
et al., 2015], finally we have our Triplet Enhanced Autoen-
coder in Fig. 1. Here the model is trained using each triplet
as a training instance. Given (i, j, k), first our model com-
pute the PPMI vectors of them, then feed the encoder and
output the embeddings (ΦΦΦi,ΦΦΦj ,ΦΦΦk). Second, we calculate
the triplet-loss of the embeddings while feeding them into the
following decoder. The output of the decoder as well as the
triplet-loss is used to compute an objective function explained
below. Three encoders and decoders share the same weights
respectively. The embeddings and the network structure are
updated by gradients propagated back from the output layers.

In detail, we simultaneously optimize two objectives of Eq.
(5) and Eq. (7). Let Ltea = Lr + α

∑
Ltri, where Lr is

the reconstruction loss of the autoencoder and
∑
Ltri is the

triplet-loss. α is a key parameter that balances the weights of
the two objectives. The network embedding is finally trans-
formed into a joint optimization problem as follow.

min
W,B,MMM

Ltea = minLr +α
∑
a,p,n

ya=yp 6=yn

[1+Da,p−Da,n]+ (8)

Specifically, we amend Lr with a tuned regularizer as follow:

Lr =
n∑

i=1

||x̂xxi − xxxi||22 + β
∑ (WWW

(l)
jk )2

1 + (WWW
(l)
jk )2

, (9)

where the term
∑ (WWW

(l)
jk )2

1+(WWW
(l)
jk )2

is called weight-elimination L2-

norm (Ridge) regularizer. The advantage of this regularizer is
making the weight matrix to be sparse while reducing over-
fitting, and it solves the problem that L1-norm (Lasso) regu-
larizer cannot be differentiated [Weigend et al., 1991].

As for the distance metric function in Eq. (8), we use the
Mahalanobis distance function which described in Eq.(6) to
measure the distance between anchor’s embedding ΦΦΦi and an-
other’s embedding ΦΦΦj .
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Since the whole objective (8) is differentiable, we are al-
lowed to apply mini-batch stochastic gradient descent (SGD)
to optimize each WWW,bbb and MMM by propagating the gradients
top-down from the output layers.

3.5 Time Complexity
The most time-consuming part of our method is the compu-
tation of triplet-loss and we calculate it every batch. It is not
difficult to see that the training complexity of our model is
O[(B + D)Bne], where B is the batch-size in our training
process, D is the maximum dimension of the hidden layers,
n is the number of vertices and e is the number of epochs we
choose to train. Parameter D is usually related to the dimen-
sion of embedding vectors but not related to the number of
vertices, e is also independent with n, B is usually tuned ac-
cording to the number of node categories. Thus, the overall
complexity is linear to the number of vertices in the network.

4 Experiment
In this section, we assess the effectiveness of our TEA model
on real-world networks. We conduct node classification as
well as clustering tasks and make comparisons with baseline
algorithms. Besides, we also visualize the learned represen-
tation to demonstrate its discriminative ability.

4.1 Datasets
We use the following three typical datasets for our experi-
ments.

• Cora1: This is a citation network of academic papers.
The vertexes are academic papers and the directed edges
are the citation relationship between papers. It contains
2,708 machine learning papers which are categorized
into 7 classes, and there are 5,429 citation links among
these papers.

• Citeseer2: This is another research paper set. These pa-
pers are from 6 classes. Similar to Cora, the links are ci-
tation relationships between the documents. It contains
3,312 publications and 4,732 connections between them.
Different from Cora, it contains several self-loops.

• BlogCatalog3: This is a network of social relationships
between users on the BlogCatalog website. The labels
of this graph are the topics specified by the uploading
users. After filtering out nodes with multi-label, it con-
tains 7,288 nodes, 131,011 edges, and 37 labels.

4.2 Baseline Methods and Evaluation Metrics
We use the following four methods as the baselines to validate
the performance of our approach. The first three are learned
in unsupervised ways, and the last one utilizes existing label
information like our approach.

• GraRep: This multi-scale method generates vertex rep-
resentations by explicitly computing successive pow-
ers of the random walk transition matrix, and SVD is

1http://www.cs.umd.edu/∼sen/lbc-proj/data/cora.tgz
2http://www.cs.umd.edu/∼sen/lbc-proj/data/citeseer.tgz
3http://socialcomputing.asu.edu/datasets/BlogCatalog3

applied to obtain a low-dimensional representation of
nodes.

• node2vec: It adopts random walk and skip-gram model
to generate network representations. By introducing the
return parameter p and the in-out parameter q, node2vec
combines DFS-like and BFS-like neighborhood explo-
ration.

• DNGR: It firstly calculates the PPMI matrix, and then
learns the representations through stacked denoising au-
toencoder. It is an exact computation similar to our ap-
proach in spirit, however, DNGR doesn’t utilize addi-
tional labeling information.

• MMDW: It is a semi-supervised method which adopts
the matrix factorization form of DeepWalk, to preserve
the network structure and discriminative information by
equipping with a support vector machine model.

In our experiment, we performed the tasks of node clas-
sification, clustering and visualization. For the node classi-
fication task, we adopted micro-F1 and macro-F1. To fur-
ther demonstrate the advantage of metric learning for lever-
aging the label information, we evaluated the embedding re-
sults with both logistic regression and support vector machine
(both implemented by LibLinear4). We applied K-means to
the learned representations of nodes and adopted normalized
mutual information (NMI) to assess the quality of the node
clustering. Due to the sensitivity of K-means on the initial
values, we repeated the clustering ten times, and the average
results were reported here.

4.3 Parameter Settings

We propose a multi-layer deep structure in this paper and the
number of layers varies with different datasets. The dimen-
sion of each layer is listed in Table 1. The hyper-parameters
of α and β are tuned by using grid search on the validation
set, the sensitivity is further evaluated in Section 4.5. The
models were trained for 20 epochs with Adam optimizer.

We set the representation dimension to 100 for baseline al-
gorithms, same as our model. The parameters in baselines
are tuned. For GraRep, we set the maximum matrix transi-
tion step K = 5 for BlogCatalog, K = 3 for Cora and Cite-
seer. For node2vec, we set the window size as 10, the walk
length as 80, the walk per vertex as 20, both in-out and return
hyper-parameters are set to 0.25. For DNGR, we set the neu-
ral network structures the same as TEA. For MMDW, we set
the gradient balance parameter η = 10−2.

Dataset #nodes in each layer

Cora [2708-520-100]
Citeseer [3312-570-100]
BlogCatalog [7288-1800-450-100]

Table 1: Neural Network Structures.

4https://www.csie.ntu.edu.tw/∼cjlin/liblinear/
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Algorithm Mac1 Mic1 Mac2 Mic2 NMI

GraRep 77.52 78.95 77.97 79.06 42.98
node2vec 80.72 81.87 79.66 81.02 46.32
DNGR 81.13 82.09 77.91 79.32 34.20
TEA(5%) 82.13 83.06 82.22 83.27 47.67
TEA(10%) 82.57 83.15 82.47 83.29 51.68

Table 2: The clustering and classification performance(%) of differ-
ent algorithms on the Cora data. Limited by layout, we use Mac1
and Mic1 to represent the metric Macro-F1 and Micro-F1 on the
model Logistic-Regression respectively, Mac2 and Mic2 to repre-
sent the metric Macro-F1 and Micro-F1 on the model SVM respec-
tively. The same below.

Algorithm Mac1 Mic1 Mac2 Mic2 NMI

GraRep 43.12 52.20 44.94 53.62 16.59
node2vec 48.25 54.74 47.16 54.20 23.18
DNGR 48.93 54.20 46.98 53.14 17.41
TEA(5%) 56.89 61.79 56.73 61.95 24.70
TEA(10%) 57.29 62.50 56.95 62.77 26.28

Table 3: The clustering and classification performance(%) of differ-
ent algorithms on the Citeseer data.

4.4 Results and Analysis
Here we first show our TEA can achieve considerable im-
provement than the unsupervised baselines with only a little
label information. Afterward, we will elaborate that our TEA
is model-free and outperforms other semi-supervised meth-
ods like MMDW.

Compared with Unsupervised Methods
We separate the embedding process and the evaluation pro-
cess so that all the embedding output can be evaluated by
more than one model. Here four-fold cross-validation is ap-
plied.

Tables 2,3 and 4 show the classification and clustering per-
formance on different datasets. In these tables, all algorithms
make full use of the topology data. TEA(5%) and TEA(10%)
mean the percentages of the additional label information we
use in TEA during the embedding process, and the rest of
the nodes are used for evaluation. From these tables, we can
observe that, compared to baselines, TEA needs only 5% la-
beled data to achieve an obvious improvement, especially for
the SVM model. These results show that labeled information
is really helpful for classification tasks.

Algorithm Mac1 Mic1 Mac2 Mic2 NMI

GraRep 17.94 36.17 18.00 36.96 19.04
node2vec 24.14 38.83 23.13 38.92 20.38
DNGR 23.85 37.71 19.20 31.27 19.14
TEA(5%) 23.49 39.96 23.25 40.52 18.13
TEA(10%) 23.82 40.69 23.57 40.70 20.69

Table 4: The clustering and classification performance(%) of differ-
ent algorithms on the BlogCatalog data.

Figure 2: t-SNE 2D representations on Cora, where different colors
indicate different classes. TEA has the most discriminative repre-
sentation.

To verify whether the learned representation is discrimina-
tive, we show the 2D representations of vertices using the t-
SNE visualization tool in Fig. 2. In this figure, each dot repre-
sents a vertex and each color represents a category. From Fig.
2, we observe that TEA learned a better clustering and sepa-
ration of the vertices. In contrast, the representations learned
by node2vec tend to mix together, and GraRep and DNGR
are even worse. A well-separated representation is more dis-
criminative and easier to apply downstream network mining
tasks.

Compared with MMDW
Here, in contrast to the unsupervised setting, we randomly
sample a portion of vertices to adopt their label information
for embedding, and use four-fold cross-validation on the rest
vertices to evaluate the embedding results. We increase the
labeled ratio from 20% to 80%, to compare the performance
of different algorithms.

Tables 5 and 6 show the classification and clustering per-
formance on different datasets. LR means the embedding re-
sults are evaluated under the model logistic regression, and
SVM means the embedding results are evaluated with SVM.

From these tables, we can observe that TEA outperforms
MMDW no matter how much labeled information is avail-
able. Although the performance of MMDW is enhanced with
label information under the SVM model, it gives poor results
when a logistic regression model is applied on the learned
embeddings (see Tables 5 and 6). Thus it is not a good rep-
resentation. These results further demonstrate that the metric
learning perspective provides a good way to leverage avail-
able labeling information, and do help network embedding.
More importantly, the resulting embedding is stable and in-
dependent of any specific model.
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Metric Algorithm 20% 30% 40% 50% 60% 70% 80%

Micro-F1(LR)
MMDW 32.03 30.73 30.01 30.80 31.13 31.74 33.72
TEA 83.30 83.58 84.74 83.85 84.96 84.37 85.90

Macro-F1(LR)
MMDW 10.15 7.59 7.46 7.19 6.92 6.88 7.20
TEA 82.83 82.46 83.97 83.24 84.54 83.82 84.85

Micro-F1(SVM)
MMDW 81.12 82.20 82.72 83.33 83.57 83.71 84.22
TEA 83.26 83.69 85.17 84.57 84.82 84.99 86.37

Macro-F1(SVM)
MMDW 79.52 80.85 81.53 82.03 82.94 82.29 83.20
TEA 82.57 82.83 84.37 84.21 84.29 84.53 85.26

NMI
MMDW 6.88 7.58 6.35 6.58 8.17 11.31 9.17
TEA 53.22 57.12 62.43 60.42 62.85 63.28 66.84

Table 5: The performance(%) of TEA and MMDW on the Cora data with different labeled ratios, ranging from 20% to 80%.

Metric Algorithm 20% 30% 40% 50% 60% 70% 80%

Micro-F1(LR)
MMDW 34.17 36.55 39.49 40.67 42.73 30.02 28.67
TEA 63.17 63.52 64.43 64.79 66.50 67.09 68.19

Macro-F1(LR)
MMDW 21.56 23.77 28.99 31.89 31.08 17.59 13.84
TEA 58.36 59.27 60.31 60.97 61.81 62.73 63.58

Micro-F1(SVM)
MMDW 57.70 60.66 61.17 62.51 63.62 64.00 62.19
TEA 62.91 64.16 64.80 65.28 66.75 67.29 68.34

Macro-F1(SVM)
MMDW 50.42 53.65 55.20 57.43 58.35 58.55 57.36
TEA 57.91 59.68 60.34 60.94 62.23 62.20 63.44

NMI
MMDW 6.04 11.56 10.88 15.58 10.88 12.36 10.77
TEA 29.58 30.74 31.14 33.52 35.15 37.48 41.10

Table 6: The performance(%) of TEA and MMDW on the Citeseer data with different labeled ratios, ranging from 20% to 80%.

4.5 Parameter Sensitivity
There is a key parameter involved in our objective function:
α. As aforementioned, α is used to adjust the weights of two
objectives (cf. Section 3.4). To test its sensitivity, we conduct
experiments on both classification and clustering tasks. The
performance of TEA against different values of α is given in
Fig. 3(a) and Fig. 3(b) in terms of Macro-F1 and NMI on the
Citeseer data, respectively. From the figure, we can observe
that TEA has a fairly stable performance when α ranges from
10−2 to 102. Depending on the specific task is classification
or clustering, it gains the best performance at different loca-
tions, mainly range from 10−1 to 100. In general, from Fig.
3, we can see that TEA achieves good performance in a wide
range of parameter settings.

5 Conclusion
In this paper, we propose a triplet-loss enhanced deep autoen-
coder, namely TEA, to perform network embedding via met-
ric learning. By leveraging the labeling information with the
triplet-loss, TEA allows learning the vertex representations
which preserve both their network structure and node dis-
criminative information with the model-free property. Exper-
iments on real-world datasets show the stability of TEA and
achieve state-of-the-art performance compared with both su-

(a) Macro-F1 for Classification (b) NMI for Clustering

Figure 3: The parameter sensitivity analysis of TEA on both cluster-
ing and classification tasks.

pervised and unsupervised network embedding approaches.
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